Fault Prognosis for Power Electronics Systems Using Adaptive Parameter Identification
Abstract:
This paper presents the design, implementation, and experimental validation of a method for fault prognosis for power electronics systems using an adaptive parameter identification approach. The adaptive parameter identifier uses a generalized gradient descent algorithm to compute real-time estimates of system parameters (e.g., capacitance, inductance, parasitic resistance) in arbitrary switching power electronics systems. These estimates can be used to monitor the overall health of a power electronics system and to pbkp_redict when faults are more likely to occur. Moreover, the estimates can be used to tune control loops that rely on the system parameter values. The parameter identification algorithm is general in that it can be applied to a broad class of systems based on switching power converters. We present a real-time experimental validation of the proposed fault prognosis method on a 3 kW solar photovoltaic interleaved boost dc-dc converter system for tracking changes in passive component values. The proposed fault prognosis method enables a flexible and scalable solution for condition monitoring and fault pbkp_rediction in power electronics systems.
Año de publicación:
2017
Keywords:
- dc-dc power conversion
- Fault diagnosis
- Adaptive estimation
- Parameter estimation
- power electronics
Fuente:
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
Áreas temáticas:
- Física aplicada