Fine-tuning based deep convolutional networks for lepidopterous genus recognition
Abstract:
This paper describes an image classification approach oriented to identify specimens of lepidopterous insects at Ecuadorian ecological reserves. This work seeks to contribute to studies in the area of biology about genus of butterflies and also to facilitate the registration of unrecognized specimens. The proposed approach is based on the fine tuning of three widely used pre-trained Convolutional Neural Networks (CNNs). This strategy is intended to overcome the reduced number of labeled images. Experimental results with a dataset labeled by expert biologists is presented, reaching a recognition accuracy above 92%.
Año de publicación:
2017
Keywords:
Fuente:
scopus
googleTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Zoología
- Ciencias de la computación
Áreas temáticas de Dewey:
- Métodos informáticos especiales
- Ciencias de la computación
- Programación informática, programas, datos, seguridad
Objetivos de Desarrollo Sostenible:
- ODS 15: Vida de ecosistemas terrestres
- ODS 17: Alianzas para lograr los objetivos
- ODS 9: Industria, innovación e infraestructura