Fingerprinting the magnetic behavior of antiferromagnetic nanostructures using remanent magnetization curves


Abstract:

Antiferromagnetic (AF) nanostructures from Co3O4, CoO, and Cr2O3 were prepared by the nanocasting method and were characterized magnetometrically. The field- and temperature-dependent magnetization data suggests that the nanostructures consist of a core-shell structure. The core behaves as a regular antiferromagnet and the shell as a two-dimensional diluted antiferromagnet in a field (2D DAFF) as previously shown on Co3O4 nanowires. Here we present a more general picture on three different material systems, i.e., Co3O4, CoO, and Cr2O3. In particular, we consider the thermoremanent (TRM) and the isothermoremanent (IRM) magnetization curves as "fingerprints" in order to identify the irreversible magnetization contribution originating from the shells. The TRM/IRM fingerprints are compared to those of superparamagnetic systems, superspin glasses, and 3D DAFFs. We demonstrate that TRM/IRM vs H plots are generally useful fingerprints to identify irreversible magnetization contributions encountered in particular in nanomagnets. © 2011 American Physical society.

Año de publicación:

2011

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Campo magnético
    • Nanostructura
    • Ciencia de materiales

    Áreas temáticas:

    • Física moderna
    • Electricidad y electrónica
    • Magnetismo