Fitted Q-Function Control Methodology Based on Takagi-Sugeno Systems
Abstract:
This paper presents a combined identification/Q-function fitting methodology that involves identification of a Takagi-Sugeno model, computation of (sub)optimal controllers from linear matrix inequalities (LMIs), and subsequent data-based fitting of the Q-function via monotonic optimization. The LMI-based initialization provides a conservative solution, but it is a sensible starting point to avoid convergence/local-minima issues in raw data-based fitted Q-iteration or Bellman residual minimization. An inverted-pendulum experimental case study illustrates the approach.
Año de publicación:
2020
Keywords:
- fitted Q-function
- Adaptive dynamic programing (DP)
- Linear Matrix Inequality (LMI)
- Takagi-Sugeno (TS)
- reinforcement learning (RL)
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema de control
- Teoría de control
Áreas temáticas:
- Ciencias de la computación