Fitted Q-Function Control Methodology Based on Takagi-Sugeno Systems


Abstract:

This paper presents a combined identification/Q-function fitting methodology that involves identification of a Takagi-Sugeno model, computation of (sub)optimal controllers from linear matrix inequalities (LMIs), and subsequent data-based fitting of the Q-function via monotonic optimization. The LMI-based initialization provides a conservative solution, but it is a sensible starting point to avoid convergence/local-minima issues in raw data-based fitted Q-iteration or Bellman residual minimization. An inverted-pendulum experimental case study illustrates the approach.

Año de publicación:

2020

Keywords:

  • fitted Q-function
  • Adaptive dynamic programing (DP)
  • Linear Matrix Inequality (LMI)
  • Takagi-Sugeno (TS)
  • reinforcement learning (RL)

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Sistema de control
  • Teoría de control

Áreas temáticas:

  • Ciencias de la computación