Fructose-1,6-bisphosphate preserves intracellular glutathione and protects cortical neurons against oxidative stress
Abstract:
Fructose-1,6-bisphosphate (FBP), an endogenous intermediate of glycolysis, protects the brain against ischemia-reperfusion injury. The mechanisms of FBP protection after cerebral ischemia are not well understood. The current study was undertaken to determine whether FBP protects primary neurons against hypoxia and oxidative stress by preserving reduced glutathione (GSH). Cultures of pure cortical neurons were subjected to oxygen deprivation, a donor of nitric oxide and superoxide radicals (3-morpholinosydnonimine), an inhibitor of glutathione synthesis (L-buthionine-sulfoximine) or glutathione reductase (1,3-bis(2-chloroethyl)-1-nitrosourea) in the presence or absence of FBP (3.5 mM). Neuronal viability was determined using an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. FBP protected neurons against hypoxia-reoxygenation and oxidative stress under conditions of compromised GSH metabolism. The efficacy of FBP depended on duration of hypoxia and was associated with higher intracellular GSH concentration, an effect partly mediated via increased glutathione reductase activity. © 2002 Elsevier Science B.V. All rights reserved.
Año de publicación:
2003
Keywords:
- ischemia
- Reactive oxygen species
- Disorders of the nervous system
- Glutathione
- Hypoxia
- 6-Bisphosphate
- Fructose-1
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Bioquímica
- Bioquímica
Áreas temáticas:
- Fisiología humana
- Bioquímica
- Farmacología y terapéutica