Fundamental Solution for Natural Powers of the Fractional Laplace and Dirac Operators in the Riemann–Liouville Sense
Abstract:
In this paper, we study the fundamental solution of natural powers of the n-parameter fractional Laplace and Dirac operators defined via Riemann–Liouville fractional derivatives. To do this we use iteration through the fractional Poisson equation starting from the fundamental solutions of the fractional Laplace Δa+α and Dirac Da+α operators, admitting a summable fractional derivative. The family of fundamental solutions of the corresponding natural powers of fractional Laplace and Dirac operators are expressed in operator form using the Mittag–Leffler function.
Año de publicación:
2020
Keywords:
- Poisson’s equation
- fractional derivatives
- Fractional Clifford analysis
- fundamental solution
- Laplace transform
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Matemáticas aplicadas
- Optimización matemática
Áreas temáticas:
- Análisis
- Física
- Matemáticas