Fundamental limitations on the variance of estimated parametric models
Abstract:
In this technical note fundamental integral limitations are derived on the variance of estimated parametric models, for both open and closed loop identification. As an application of these results we show that, for multisine inputs, a well known asymptotic (in model order) variance expression provides upper bounds on the actual variance of the estimated models for finite model orders. The fundamental limitations established here give rise to a 'water-bed' effect, which is illustrated in an example. © 2009 IEEE.
Año de publicación:
2009
Keywords:
- Single-input single-output (SISO)
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Inferencia estadística
- Optimización matemática
Áreas temáticas:
- Sistemas
- Estadísticas generales de América del Norte
- Probabilidades y matemática aplicada