Fundamental solution for natural powers of the fractional laplace and dirac operators in the Riemann–Liouville sense
Abstract:
In this paper, we study the fundamental solution of natural powers of the n-parameter fractional Laplace and Dirac operators defined via Riemann–Liouville fractional derivatives. To do this we use iteration through the fractional Poisson equation starting from the fundamental solutions of the fractional Laplace and Dirac operators, admitting a summable fractional derivative. The family of fundamental solutions of the corresponding natural powers of fractional Laplace and Dirac operators are expressed in operator form using the Mittag–Leffler function.
Año de publicación:
2020
Keywords:
Fuente:
google
Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Optimización matemática
- Matemáticas aplicadas
- Optimización matemática
Áreas temáticas:
- Análisis
- Álgebra
- Análisis numérico