Further results on antimagic graph labelings


Abstract:

For a graph G = (V, E) with p vertices and q edges, a bijection f from V(G) ∪ E(G) onto {1, 2,...,-p + q] is called an (a, d)-edge-antimagic total labeling of G if the edge-weights {w(uv): w(uv) = f(u) + f(v) + f(uv),uv G E(G)}, form an arithmetic progression starting from a and having common difference d. We study graphs with no edge-antimagic labeling and show how to construct labelings for cycles with d = 3. We also show the relationship between the sequential graphs and the graphs having an (a, d)-edge-antimagic vertex labeling.

Año de publicación:

2007

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Teoría de grafos
    • Optimización matemática
    • Optimización matemática

    Áreas temáticas:

    • Ciencias de la computación