Fuzzy radial basis function neural networks for web applications cost estimation


Abstract:

The Fuzzy Radial basis function Neural Networks (FRBFN) for software cost estimation is designed by integrating the principles of RBFN and the fuzzy C-means clustering algorithm. The architecture of the network is suitably modified at the hidden layer to realise a novel neural implementation of the fuzzy clustering algorithm. Fuzzy set-theoretic concepts are incorporated at the hidden layer, enabling the model to handle uncertain and imprecise data, which can improve greatly the accuracy of obtained estimates. MMRE and Pred are used as measures of pbkp_rediction accuracy for this comparative study. The results show that an RBFN using fuzzy C-means performs better than an RBFN using hard C-means. This study uses data on web applications from the Tukutuku database. ©2008 IEEE.

Año de publicación:

2007

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Red neuronal artificial
    • Ciencias de la computación

    Áreas temáticas:

    • Programación informática, programas, datos, seguridad