Gaussian process regression for array interpolation
Abstract:
This paper introduces the Gaussian process regression formulation for estimating the bearings of signals with randomly spaced antenna arrays. A generalized methodology to estimate complex variables using a multivariate Gaussian is formulated. The incoming signals are sampled nonuniformly in the spatial domain using antenna elements at random locations on a linear axis. The nonuniformly sampled outputs of the array are subsequently interpolated to map the outputs of a virtual uniform array using a multivariate Gaussian process regression. The estimated signal vectors are the input to a root-MuSiC algorithm for computing the directions of arrival of signals. The proposed algorithm is subjected to Monte Carlo simulations and preliminary findings are compared to the output of a standalone root-MuSiC algorithm to validate the efficacy of the approach.
Año de publicación:
2019
Keywords:
- Direction of arrival estimation
- unsupervised learning
- Machine learning
- Multivariate Gaussian processes
- Complex Gaussian process
- Adaptive arrays
- Array synthesis
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Estadísticas
Áreas temáticas:
- Ciencias de la computación