Generalized minor inequalities for the set covering polyhedron related to circulant matrices
Abstract:
We study the set covering polyhedron related to circulant matrices. In particular, our goal is to characterize the first Chvátal closure of the usual fractional relaxation. We present a family of valid inequalities that generalizes the family of minor inequalities previously reported in the literature and includes new facet-defining inequalities. Furthermore, we propose a polynomial time separation algorithm for a particular subfamily of these inequalities.
Año de publicación:
2016
Keywords:
- circulant matrices
- Set covering
- Chvátal closure
Fuente:


Tipo de documento:
Conference Object
Estado:
Acceso abierto
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Álgebra
- Principios generales de matemáticas
- Probabilidades y matemática aplicada