Generative adversarial networks selection approach for extremely imbalanced fault diagnosis of reciprocating machinery


Abstract:

At present, countless approaches to fault diagnosis in reciprocating machines have been proposed, all considering that the available machinery dataset is in equal proportions for all conditions. However, when the application is closer to reality, the problem of data imbalance is increasingly evident. In this paper, we propose a method for the creation of diagnoses that consider an extreme imbalance in the available data. Our approach first processes the vibration signals of the machine using a wavelet packet transform-based feature-extraction stage. Then, improved generative models are obtained with a dissimilarity-based model selection to artificially balance the dataset. Finally, a Random Forest classifier is created to address the diagnostic task. This methodology provides a considerable improvement with 99% of data imbalance over other approaches reported in the literature, showing performance similar to that …

Año de publicación:

2019

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Aprendizaje automático

    Áreas temáticas de Dewey:

    • Métodos informáticos especiales
    • Inglés e inglés antiguo (anglosajón)
    • Física aplicada
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 12: Producción y consumo responsables
    • ODS 8: Trabajo decente y crecimiento económico
    Procesado con IAProcesado con IA

    Contribuidores: