Granular fingering as a mechanism for ridge formation in debris avalanche deposits: Laboratory experiments and implications for Tutupaca volcano, Peru
Abstract:
The origin of subparallel, regularly-spaced longitudinal ridges often observed at the surface of volcanic and other rock avalanche deposits remains unclear. We addressed this issue through analogue laboratory experiments on flows of bi-disperse granular mixtures, because this type of flow is known to exhibit granular fingering that causes elongated structures resembling the ridges observed in nature. We considered four different mixtures of fine (300–400 μm) glass beads and coarse (600–710 μm to 900–1000 μm) angular crushed fruit stones, with particle size ratios of 1.9–2.7 and mass fractions of the coarse component of 5–50 wt%. The coarse particles segregated at the flow surface and accumulated at the front where flow instabilities with a well-defined wavelength grew. These formed granular fingers made of coarse-rich static margins delimiting fines-rich central channels. Coalescence of adjacent finger margins created regular spaced longitudinal ridges, which became topographic highs as finger channels drained at final emplacement stages. Three distinct deposit morphologies were observed: 1) Joined fingers with ridges were formed at low (≤ 1.9) size ratio and moderate (10–20 wt%) coarse fraction whereas 2) separate fingers or 3) poorly developed fingers, forming series of frontal lobes, were created at larger size ratios and/or higher coarse contents. Similar ridges and lobes are observed at the debris avalanche deposits of Tutupaca volcano, Peru, suggesting that the processes operating in the experiments can also occur in nature. This implies that volcanic (and non-volcanic) debris avalanches can behave as granular flows, which has important implications for interpretation of deposits and for modeling. Such behaviour may be acquired as the collapsing material disaggregates and forms a granular mixture composed by a right grain size distribution in which particle segregation can occur. Limited fragmentation and block sliding, or grain size distributions inappropriate for promoting granular fingering can explain why ridges are absent in many deposits.
Año de publicación:
2018
Keywords:
- Debris avalanche
- Analogue experiments
- Granular fingering
- Ridge
- Granular flow
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Volcanismo
- Ciencia planetaria
Áreas temáticas:
- Petrología