Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting
Abstract:
Planning the expansion and the new topology of distribution networks requires knowing the location and characterization of the load as well as its future growth. Spatial load forecasting is a key tool in this task, providing high spatial resolution and adequate temporal granularity. Nowadays, with the penetration of distributed energy resources, multiple microgrid connection strategies, and implementation of self-healing and protection schemes, it is necessary to identify load blocks to plan the new active network architecture. Based on spatial load forecasting information, this paper proposes a graph partitioning technique to create load clusters in the distribution feeders. A weighted graph is constructed by means of a minimum spanning tree that allows to consider adjacency relations. The results of the simulation, carried out in a real distribution network, have demonstrated the effectiveness of the proposed method.
Año de publicación:
2021
Keywords:
- Clustering
 - Minimal spanning tree
 - Distribution planning
 - Microgrids
 - Spatial Load Forecasting
 - Graph partitioning
 
Fuente:
scopusTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Energía
 - Ciencias de la computación
 
Áreas temáticas de Dewey:
- Física aplicada
 - Dirección general
 - Economía de la tierra y la energía
 
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
 - ODS 11: Ciudades y comunidades sostenibles
 - ODS 7: Energía asequible y no contaminante