Habitat mapping from satellite imagery and wildlife survey data using a Bayesian modeling procedure in a GIS


Abstract:

A method for using coarse resolution data from wildlife survey to classify a Landsat Thematic Mapper image and digital elevation model (DEM) is described. Classification is based on an analytical Bayesian probability method implemented within a GIS and is illustrated using a case study of curlew Numenius arquata in part of the Grampian Region, NE Scotland. The product of the analysis is a detailed map ("information surface') at the spatial resolution of the satellite image that describes the distribution of the species as probably of occurrence. This can also be used as a map of habitat quality or suitability and analyzed further with a GIS. -from Authors

Año de publicación:

1993

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Ecología
    • Ciencia ambiental

    Áreas temáticas:

    • Ciencias de la computación
    • Astronomía y ciencias afines
    • Otras ramas de la ingeniería