Habitat mapping from satellite imagery and wildlife survey data using a Bayesian modeling procedure in a GIS
Abstract:
A method for using coarse resolution data from wildlife survey to classify a Landsat Thematic Mapper image and digital elevation model (DEM) is described. Classification is based on an analytical Bayesian probability method implemented within a GIS and is illustrated using a case study of curlew Numenius arquata in part of the Grampian Region, NE Scotland. The product of the analysis is a detailed map ("information surface') at the spatial resolution of the satellite image that describes the distribution of the species as probably of occurrence. This can also be used as a map of habitat quality or suitability and analyzed further with a GIS. -from Authors
Año de publicación:
1993
Keywords:
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Ecología
- Ciencia ambiental
Áreas temáticas:
- Ciencias de la computación
- Astronomía y ciencias afines
- Otras ramas de la ingeniería