Handling binary classification problems with a priority class by using Support Vector Machines


Abstract:

A post-processing technique for Support Vector Machine (SVM) algorithms for binary classification problems is introduced in order to obtain adequate accuracy on a priority class (labelled as a positive class). That is, the true positive rate (or recall or sensitivity) is prioritized over the accuracy of the overall classifier. Hence, false negative (or Type I) errors receive greater consideration than false positive (Type II) errors during the construction of the model. This post-processing technique tunes the initial bias term once a solution vector is learned by using standard SVM algorithms in two steps: First, a fixed threshold is given as a lower bound for the recall measure; second, the true negative rate (or specificity) is maximized. Experiments, carried out on eleven standard UCI datasets, show that the modified SVM satisfies the aims for which it has been designed. Furthermore, results are comparable or better than those obtained when other state-of-the-art SVM algorithms and other usual metrics are considered.

Año de publicación:

2017

Keywords:

  • Cost-sensitive SVM
  • Post-processing strategies
  • pattern recognition
  • SUPPORT VECTOR MACHINES

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático

Áreas temáticas:

  • Programación informática, programas, datos, seguridad