Harmonic multivector fields and the Cauchy integral decomposition in Clifford analysis
Abstract:
In this paper we study the problem of decomposing a Hölder continuous k-grade multivector field Fk on the boundary Γ of an open bounded subset Ω in Euclidean space ℝn into a sum F k = Fk+ + Fk- of harmonic k-grade multivector fields Fk± in Ω+ = Ω and Ω- = ℝn / (Ω ∪ Γ) respectively. The necessary and sufficient conditions upon Fk we thus obtain complement those proved by Dyn'kin in [20,21] in the case where Fk is a continuous k-form on Γ. Being obtained within the framework of Clifford analysis and hence being of a pure function theoretic nature, they once more illustrate the importance of the interplay between Clifford analysis and classical real harmonic analysis.
Año de publicación:
2004
Keywords:
- Cauchy transform
- Clifford analysis
- Multivector fields
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Modelo matemático
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Álgebra
- Análisis