Heuristic optimization based approach for identification of power system dynamic equivalents
Abstract:
This paper introduces an approach for identification of dynamic equivalent parameters from measured operational dynamic responses associated to different disturbances. To tackle challenges related to optimization problem complexity (i.e., non-linearity of time-domain simulation based fitness calculation, discontinuity, non-convexity, and multimodality), the approach adopts a novel variant of the mean-variance mapping optimization algorithm to pursue efficient and fast search capability. This variant bases on swarm intelligence precepts and employs a multi-parent crossover criterion for offspring creation. Numerical tests performed on the Ecuadorian-Colombian interconnected system, including performance comparisons with other heuristic optimization tools, support the potential of the proposal to provide accurate estimates within a fast convergence rate. © 2014 Elsevier Ltd. All rights reserved.
Año de publicación:
2015
Keywords:
- mean-variance mapping optimization
- power system modeling
- power system dynamic performance
- Dynamic equivalent
- Heuristic optimization
Fuente:


Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Física aplicada
- Métodos informáticos especiales
- Sistemas