High order variational integrators in the optimal control of mechanical systems
Abstract:
In recent years, much effort in designing numerical methods for the simulation and optimization of mechanical systems has been put into schemes which are structure preserving. One particular class are variational integrators which are momentum preserving and symplectic. In this article, we develop two high order variational integrators which distinguish themselves in the dimension of the underling space of approximation and we investigate their application to finite-dimensional optimal control problems posed with mechanical systems. The convergence of state and control variables of the approximated problem is shown. Furthermore, by analyzing the adjoint systems of the optimal control problem and its discretized counterpart, we prove that, for these particular integrators, dualization and discretization commute.
Año de publicación:
2015
Keywords:
- Optimal Control
- High order
- Variational integrator
- Commutation property
- Runge-Kutta
- Direct methods
- Geometric integration
- Mechanical systems
Fuente:
scopusTipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Optimización matemática
- Ingeniería mecánica
- Control óptimo
Áreas temáticas de Dewey:
- Física aplicada
- Otras ramas de la ingeniería
- Dibujo y planos
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 4: Educación de calidad