Homogenized models for a short-time filtration in elastic porous media


Abstract:

We consider a linear system of differential equations describing a joint motion of elastic porous body and fluid occupying porous space. The rigorous justification, under various conditions imposed on physical parameters, is fulfilled for homogenization procedures as the dimensionless size of the pores tends to zero, while the porous body is geometrically periodic and a characteristic time of processes is small enough. Such kind of models may describe, for example, hydraulic fracturing or acoustic or seismic waves propagation. As the results, we derive homogenized equations involving non-isotropic Stokes system for fluid velocity coupled with two different types of acoustic equations for the solid component, depending on ratios between physical parameters, or non-isotropic Stokes system for one-velocity continuum. The proofs are based on Nguetseng's two-scale convergence method of homogenization in periodic structures. © 2008 Texas State University - San Marcos.

Año de publicación:

2008

Keywords:

  • two-scale convergence
  • Stokes equations
  • Lamé's equations
  • Hydraulic fracturing
  • Homogenization of periodic structures

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Modelo matemático
  • Ingeniería mecánica
  • Ciencia de materiales

Áreas temáticas de Dewey:

  • Ingeniería y operaciones afines
  • Ingeniería civil
  • Química física
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 6: Agua limpia y saneamiento
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA