Hyper-chaotic Magnetisation Dynamics of Two Interacting Dipoles
Abstract:
The present work is a numerical study of the deterministic spin dynamics of two interacting anisotropic magnetic particles in the presence of a time-dependent external magnetic field using the Landau–Lifshitz equation. Particles are coupled through the dipole–dipole interaction. The applied magnetic field is made of a constant longitudinal amplitude component and a time-dependent transversal amplitude component. Dynamical states obtained are represented by their Lyapunov exponents and bifurcation diagrams. The dependence on the largest and the second largest Lyapunov exponents, as a function of the magnitude and frequency of the applied magnetic field, and the relative distance between particles, is studied. The system presents multiple transitions between regular and chaotic behaviour depending on the control parameters. In particular, the system presents consistent hyper-chaotic states.
Año de publicación:
2015
Keywords:
- Hyper-chaos
- Magnetisation dynamics
- dipolar interaction
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Magnetohidrodinámica
- Sistema no lineal
- Magnetismo
Áreas temáticas:
- Electricidad y electrónica