Hyperspectral satellite remote sensing of water quality in Lake Atitlan, Guatemala
Abstract:
In this study we evaluated the applicability of a space-borne hyperspectral sensor, Hyperion, to resolve for chlorophyll a (Chl a) concentration in Lake Atitlan, a tropical mountain lake in Guatemala. In situ water quality samples of Chl a concentration were collected and correlated with water surface reflectance derived from Hyperion images, to develop a semi-empirical algorithm. Existing operational algorithms were tested and the continuous bands of Hyperion were evaluated in an iterative manner. A third order polynomial regression provided a good fit to model Chl a. The final algorithm uses a blue (467 nm) to green (559 nm) band ratio to successfully model Chl a concentrations in Lake Atitlán during the dry season, with a relative error of 33%. This analysis confirmed the suitability of hyperspetral-imagers like Hyperion, to model Chl a concentrations in Lake Atitlán. This study also highlights the need to test and update this algorithm with operational multispectral sensors such as Landsat and Sentinel-2.
Año de publicación:
2020
Keywords:
Fuente:
Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Sensores remotos
- Sensores remotos
- Ciencia ambiental
Áreas temáticas:
- Geología, hidrología, meteorología
- Física aplicada
- Otros problemas y servicios sociales