Hölder norm estimate for a Hilbert transform in Hermitean Clifford analysis
Abstract:
A Hilbert transform for Hölder continuous circulant (2 × 2) matrix functions, on the d-summable (or fractal) boundary Γ of a Jordan domain Ω in ℝ 2n, has recently been introduced within the framework of Hermitean Clifford analysis. The main goal of the present paper is to estimate the Hölder norm of this Hermitean Hilbert transform. The expression for the upper bound of this norm is given in terms of the Hölder exponents, the diameter of Γ and a specific d-sum (d > d) of the Whitney decomposition of Ω. The result is shown to include the case of a more standard Hilbert transform for domains with left Ahlfors-David regular boundary. © 2012 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Chinese Mathematical Society and Springer-Verlag Berlin Heidelberg.
Año de publicación:
2012
Keywords:
- Hilbert Transform
- Hermitean Clifford analysis
- fractal geometry
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Modelo matemático
- Optimización matemática
Áreas temáticas:
- Análisis
- Geología, hidrología, meteorología
- Matemáticas