Ideas and perspectives: Patterns of soil CO2, CH4, and N2O fluxes along an altitudinal gradient - A pilot study from an Ecuadorian neotropical montane forest
Abstract:
pTropical forest soils are an important source and sink of greenhouse gases (GHGs), with tropical montane forests, in particular, having been poorly studied. The understanding of this ecosystem function is of vital importance for future climate change research. In this study, we explored soil fluxes of carbon dioxide (COspan classCombining double low line inline-formula 2), methane (CHspan classCombining double low line inline-formula 4), and nitrous oxide (Nspan classCombining double low line inline-formula 2O) in four tropical forest sites located on the western flanks of the Andes in northern Ecuador. The measurements were carried out during the dry season from August to September 2018 and along an altitudinal gradient from 400 to 3010 m a.s.l. (above sea level). During this short-term campaign, our measurements showed (1) an unusual but marked increase in COspan classCombining double low line inline-formula 2 emissions at high altitude, possibly linked to changes in soil pH and/or root biomass, (2) a consistent atmospheric CHspan classCombining double low line inline-formula 4 sink over all altitudes with high temporal and spatial variability, and (3) a transition from a net Nspan classCombining double low line inline-formula 2O source to sink along the altitudinal gradient. Our results provide arguments and insights for future and more detailed studies on tropical montane forests. Furthermore, they stress the relevance of using altitudinal transects as a biogeochemical open-air laboratory with a steep in situ environmental gradient over a limited spatial distance. Although short-term studies of temporal variations can improve our understanding of the mechanisms behind the production and consumption of soil GHGs, the inclusion of more rigorous sampling for forest management events, forest rotation cycles, soil type, hydrological conditions and drainage status, ground vegetation composition and cover, soil microclimate, and temporal (seasonality) and spatial (topographic positions) variability is needed in order to obtain more reliable estimates of the COspan classCombining double low line inline-formula 2, CHspan classCombining double low line inline-formula 4, and Nspan classCombining double low line inline-formula 2O source/sink strength of tropical montane forests./p.
Año de publicación:
2021
Keywords:
Fuente:


Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Fertilidad del suelo
- Ecología
- Clima
Áreas temáticas:
- Ecología
- Organizaciones