Identification and model predictive control of an experimental adaptive optics setup utilizing Kautz basis functions


Abstract:

In this paper, we develop an identification technique based on continuous-time Kautz basis functions and Maximum Likelihood estimation from discrete-time data to obtain a continuous-time model of a laboratory adaptive optics system. We illustrate the proposed identification method using synthetic data and experimental data of a laboratory adaptive optics setup. Finally we utilize the estimated model to develop a Model Predictive Control strategy that considers the deformable mirror actuation constraints. We illustrate the benefits of the model predictive control strategy via simulations and compare it against the classical Proportional-Integral controller.

Año de publicación:

2020

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Simulación por computadora

    Áreas temáticas de Dewey:

    • Física aplicada
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 17: Alianzas para lograr los objetivos
    • ODS 4: Educación de calidad
    Procesado con IAProcesado con IA