Identification and model predictive control of an experimental adaptive optics setup utilizing Kautz basis functions
Abstract:
In this paper, we develop an identification technique based on continuous-time Kautz basis functions and Maximum Likelihood estimation from discrete-time data to obtain a continuous-time model of a laboratory adaptive optics system. We illustrate the proposed identification method using synthetic data and experimental data of a laboratory adaptive optics setup. Finally we utilize the estimated model to develop a Model Predictive Control strategy that considers the deformable mirror actuation constraints. We illustrate the benefits of the model predictive control strategy via simulations and compare it against the classical Proportional-Integral controller.
Año de publicación:
2020
Keywords:
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Simulación por computadora
Áreas temáticas de Dewey:
- Física aplicada

Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 4: Educación de calidad
