Identification of continuous-time state-space models from non-uniform fast-sampled data


Abstract:

In this study, we apply the expectation-maximisation (EM) algorithm to identify continuous-time state-space models from non-uniformly fast-sampled data. The sampling intervals are assumed to be small and uniformly bounded. The authors use a parameterisation of the sampled-data model in incremental form in order to modify the standard formulation of the EM algorithm for discrete-time models. The parameters of the incremental model converge to the parameter of the continuous-time system description as the sampling period goes to zero. The benefits of the proposed algorithm are successfully demonstrated via simulation studies. © 2011 The Institution of Engineering and Technology.

Año de publicación:

2011

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Sistema de control
    • Teoría de control

    Áreas temáticas:

    • Ciencias de la computación