Identification of continuous-time state-space models from non-uniform fast-sampled data
Abstract:
In this study, we apply the expectation-maximisation (EM) algorithm to identify continuous-time state-space models from non-uniformly fast-sampled data. The sampling intervals are assumed to be small and uniformly bounded. The authors use a parameterisation of the sampled-data model in incremental form in order to modify the standard formulation of the EM algorithm for discrete-time models. The parameters of the incremental model converge to the parameter of the continuous-time system description as the sampling period goes to zero. The benefits of the proposed algorithm are successfully demonstrated via simulation studies. © 2011 The Institution of Engineering and Technology.
Año de publicación:
2011
Keywords:
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema de control
- Teoría de control
Áreas temáticas:
- Ciencias de la computación