Identification of sparse FIR systems using a general quantisation scheme


Abstract:

This paper presents an identification scheme for sparse FIR systems with quantised data. We consider a general quantisation scheme, which includes the commonly deployed static quantiser as a special case. To tackle the sparsity issue, we utilise a Bayesian approach, where an ℓ1 a priori distribution for the parameters is used as a mechanism to promote sparsity. The general framework used to solve the problem is maximum likelihood (ML). The ML problem is solved by using a generalised expectation maximisation algorithm. © 2013 Taylor & Francis.

Año de publicación:

2014

Keywords:

  • sparsity
  • Quantised systems
  • Maximum likelihood
  • system identification

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Procesamiento de señales

Áreas temáticas:

  • Ciencias de la computación
  • Física aplicada
  • Métodos informáticos especiales