Identification of sparse FIR systems using a general quantisation scheme
Abstract:
This paper presents an identification scheme for sparse FIR systems with quantised data. We consider a general quantisation scheme, which includes the commonly deployed static quantiser as a special case. To tackle the sparsity issue, we utilise a Bayesian approach, where an ℓ1 a priori distribution for the parameters is used as a mechanism to promote sparsity. The general framework used to solve the problem is maximum likelihood (ML). The ML problem is solved by using a generalised expectation maximisation algorithm. © 2013 Taylor & Francis.
Año de publicación:
2014
Keywords:
- sparsity
- Quantised systems
- Maximum likelihood
- system identification
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Procesamiento de señales
Áreas temáticas:
- Ciencias de la computación
- Física aplicada
- Métodos informáticos especiales