Identification of state-space systems using a dual time-frequency domain approach
Abstract:
In this paper we obtain the maximum likelihood estimate of the parameters of discrete-time state-space models by using a dual time-frequency domain approach. We propose an Expectation Maximization formulation that considers a (non-bijective) linear transformation of the available data. Such a transformation may correspond to different options: selection of time-domain data, transformation to the frequency domain, or selection of frequency-domain data obtained from time-domain samples. We also explore the application of these ideas to Errors-In-Variables systems. ©2010 IEEE.
Año de publicación:
2010
Keywords:
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema de control
- Optimización matemática
- Teoría de control
Áreas temáticas:
- Ingeniería y operaciones afines
- Física aplicada
- Otras ramas de la ingeniería