Identifying Similar Groups of Countries According to the Impact of Corona Virus (COVID-19) by a Two-Layer Clustering Method


Abstract:

This paper presents a new clustering algorithm to identify groups of countries. First, a layer of several clustering methods is applied to the original dataset. Then, after performing dimensionality reduction techniques like t-SNE or SOM on the resulting data, a second clustering layer (K-Means) is applied to identify the final clusters. This method is applied to a dataset from 163 countries, considering the following variables population, area, Gross Domestic Product (GDP), Gross Domestic Product adjusted for Purchase Power Parity (GDP-PPP), and COVID-19 related data (Confirmed, Recovered, and Deaths). The implementation with SOM dimensionality reduction outperformed the one with t-SNE for the considered dataset. We expect that using this information, countries can have an insight on which measures against COVID-19 replicate or avoid, based on the results in countries from the same cluster.

Año de publicación:

2021

Keywords:

  • K-Means
  • self-organizing map
  • covid-19
  • Two-layer clustering
  • Clustering

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Análisis de datos
  • Epidemiología

Áreas temáticas:

  • Programación informática, programas, datos, seguridad
  • Funcionamiento de bibliotecas y archivos
  • Otros problemas y servicios sociales