Improve customer experience based on recommendation and detection of a pattern change in eating habits


Abstract:

This paper lays out a new approach to improve consumer experience using a graph database to extract the consumer eating habits from a large amount of anonymized data. As a result, a web system was developed for making recipes, recommendations using recommender system techniques, inference, and a graph technology. Also a set of multimedia components and mobile services are joined to the system in order to reach a new level of use of digital consumer services.

Año de publicación:

2018

Keywords:

  • Recommender system
  • graph databases
  • Neo4j
  • Eating Habits
  • inference data
  • on-line payments

Fuente:

scopusscopus
googlegoogle
orcidorcid

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Comportamiento del consumidor
  • Análisis de datos

Áreas temáticas de Dewey:

  • Procesos sociales
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 3: Salud y bienestar
  • ODS 12: Producción y consumo responsables
  • ODS 2: Hambre cero
Procesado con IAProcesado con IA