Improving core topics discovery in semantic markup literature: A combined approach


Abstract:

This research configures a corpus of articles related to the aspects being investigated in Semantic Markup, knowledge domain that has evolved and expanded over the last decade and conduct a manual process to identify the Topics being addressed. Then, it is used LDA, an unsupervised probabilistic topic model, and other tools, for automatically recognize the topics of interest within this corpus; this aims to interpret, validate and complement the results manually obtained. The results let us argue that using combined techniques contribute to improving the human expert analysis, and it is helpfully for the discovery of core topics in Semantic Markup Literature.

Año de publicación:

2020

Keywords:

  • Topic Models
  • Systematic mapping
  • Latent Dirichlet Allocation
  • Embedded semantic markup

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Web Semántica
  • Ciencias de la computación

Áreas temáticas:

  • Funcionamiento de bibliotecas y archivos