Improving the Back Surface Field on an Amorphous Silicon Carbide Thin-Film Photocathode for Solar Water Splitting
Abstract:
Amorphous silicon carbide (a-SiC:H) is a promising material for photoelectrochemical water splitting owing to its relatively small band-gap energy and high chemical and optoelectrical stability. This work studies the interplay between charge-carrier separation and collection, and their injection into the electrolyte, when modifying the semiconductor/electrolyte interface. By introducing an n-doped nanocrystaline silicon oxide layer into a p-doped/intrinsic a-SiC:H photocathode, the photovoltage and photocurrent of the device can be significantly improved, reaching values higher than 0.8 V. This results from enhancing the internal electric field of the photocathode, reducing the Shockley–Read–Hall recombination at the crucial interfaces because of better charge-carrier separation. In addition, the charge-carrier injection into the electrolyte is enhanced by introducing a TiO2 protective layer owing to better band alignment at the interface. Finally, the photocurrent was further enhanced by tuning the absorber layer thickness, arriving at a thickness of 150 nm, after which the current saturates to 10 mA cm−2 at 0 V vs. the reversible hydrogen electrode in a 0.2 m aqueous potassium hydrogen phthalate (KPH) electrolyte at pH 4.
Año de publicación:
2018
Keywords:
- charge carrier injection
- water splitting
- titanium dioxide
- hydrogen
- Silicon carbide
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Energía
- Fotovoltaica
- Energía renovable
Áreas temáticas:
- Física aplicada