Incremental scenario representations for autonomous driving using geometric polygonal primitives


Abstract:

When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.

Año de publicación:

2016

Keywords:

  • autonomous vehicles
  • Polygonal primitives
  • Point clouds
  • Incremental scene reconstruction

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Simulación por computadora
  • Visión por computadora
  • Simulación por computadora

Áreas temáticas:

  • Otras ramas de la ingeniería