Inference of building occupancy signals using moving horizon estimation and Fourier regularization


Abstract:

We study the problem of estimating time-varying occupancy and ambient air flow signals using noisy carbon dioxide and flow sensor measurements. A regularized moving horizon estimation formulation is proposed that constrains time-varying signals to smooth Fourier expansions. We demonstrate that the regularization approach makes the estimator robust to high levels of noise. In addition, it requires minimal information about the shape of the signals. Computational experiments with simulated and real data demonstrate the effectiveness of the approach. © 2013 Elsevier Ltd. All rights reserved.

Año de publicación:

2014

Keywords:

  • FOURIER
  • regularization
  • Moving horizon estimation
  • Carbon dioxide
  • Air flow
  • occupancy

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Aprendizaje automático

Áreas temáticas:

  • Física aplicada
  • Otras ramas de la ingeniería

Contribuidores: