Inference of building occupancy signals using moving horizon estimation and Fourier regularization
Abstract:
We study the problem of estimating time-varying occupancy and ambient air flow signals using noisy carbon dioxide and flow sensor measurements. A regularized moving horizon estimation formulation is proposed that constrains time-varying signals to smooth Fourier expansions. We demonstrate that the regularization approach makes the estimator robust to high levels of noise. In addition, it requires minimal information about the shape of the signals. Computational experiments with simulated and real data demonstrate the effectiveness of the approach. © 2013 Elsevier Ltd. All rights reserved.
Año de publicación:
2014
Keywords:
- FOURIER
- regularization
- Moving horizon estimation
- Carbon dioxide
- Air flow
- occupancy
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Aprendizaje automático
Áreas temáticas:
- Física aplicada
- Otras ramas de la ingeniería