Influence of functional groups on charge transport in molecular junctions
Abstract:
Using density functional theory (DFT), we analyze the influence of five classes of functional groups, as exemplified by N O2, OC H3, C H3, C Cl3, and I, on the transport properties of a 1,4-benzenedithiolate (BDT) and 1,4-benzenediamine (BDA) molecular junction with gold electrodes. Our analysis demonstrates how ideas from functional group chemistry may be used to engineer a molecule's transport properties, as was shown experimentally and using a semiempirical model for BDA [Nano Lett. 7, 502 (2007)]. In particular, we show that the qualitative change in conductance due to a given functional group can be pbkp_redicted from its known electronic effect (whether it is π donating/withdrawing). However, the influence of functional groups on a molecule's conductance is very weak, as was also found in the BDA experiments. The calculated DFT conductances for the BDA species are five times larger than the experimental values, but good agreement is obtained after correcting for self-interaction and image charge effects. © 2008 American Institute of Physics.
Año de publicación:
2008
Keywords:
Fuente:


Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Química orgánica
- Nanostructura
- Ciencia de materiales
Áreas temáticas:
- Química física