Influence of the training methods in the diagnosis of multiple sclerosis using radial basis functions artificial neural networks
Abstract:
The data available in the average clinical study of a disease is very often small. This is one of the main obstacles in the application of neural networks to the classification of biological signals used for diagnosing diseases. A rule of thumb states that the number of parameters (weights) that can be used for training a neural network should be around 15% of the available data, to avoid overlearning. This condition puts a limit on the dimension of the input space. Different authors have used different approaches to solve this problem, like eliminating redundancy in the data, preprocessing the data to fmd centers for the radial basis functions, or extracting a small number of features that were used as inputs. It is clear that the classification would be better the more features we could feed into the network. The approach utilized in this paper is incrementing the number of training elements with randomly expanding training sets. This way the number of original signals does not constraint the dimension of the input set in the radial basis network. Then we train the network using the method that minin1izes the error function using the gradient descent algorithm and the method that uses the particle swarm optimization technique. A comparison between the two methods showed that for the same number of iterations on both methods, the particle swarm optimization was faster, it was learning to recognize only the sick people. On the other hand, the gradient method was not as good in general better at identifying those people.
Año de publicación:
2014
Keywords:
- Signal processing
- Multiple Sclerosis.
- Health Sciences
- Radial Basis Functions
- Neural networks
- Particle Swarm Optimization
- wavelets
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Red neuronal artificial
- Ciencias de la computación
Áreas temáticas:
- Enfermedades
- Fisiología humana