Influence of wavelet boundary conditions on the classification of biological signals


Abstract:

Doctors utilized Brain Stem Auditory Evoked Potentials (BAEP) to diagnose patients with multiple sclerosis. We use eight coefficients of each of the several wavelet transforms of the BAEP signals to train an artificial neural network with radial basis functions. We study how the boundary conditions used to determine the wavelet transforms affect the maximum number of correct diagnoses. Using this information, we establish the best strategy to avoid misleading information created by the boundary conditions.

Año de publicación:

2000

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

      Áreas temáticas:

      • Medicina y salud
      • Fisiología humana
      • Microorganismos, hongos y algas