Inframonogenic functions and their applications in 3-dimensional elasticity theory
Abstract:
Solutions of the sandwich equation ∂x_f∂x_=0, where ∂x_ stands for the first-order differential operator (called Dirac operator) in the Euclidean space ℝm, are known as inframonogenic functions. These functions generalize in a natural way the theory of kernels associated with ∂x_, the nowadays well-known monogenic functions, and can be viewed also as a refinement of the biharmonic ones. In this paper we deepen study the connections between inframonogenic functions and the solutions of the homogeneous Lamé-Navier system in ℝ3. Our findings allow to shed some new light on the structure of the solutions of this fundamental system in 3-dimensional elasticity theory.
Año de publicación:
2018
Keywords:
- Linear elasticity
- inframonogenic functions
- Clifford analysis
- Lamé system
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Matemáticas aplicadas
Áreas temáticas:
- Ingeniería y operaciones afines
- Otras ramas de la ingeniería
- Mecánica clásica