Inframonogenic functions and their applications in 3-dimensional elasticity theory


Abstract:

Solutions of the sandwich equation ∂x_f∂x_=0, where ∂x_ stands for the first-order differential operator (called Dirac operator) in the Euclidean space ℝm, are known as inframonogenic functions. These functions generalize in a natural way the theory of kernels associated with ∂x_, the nowadays well-known monogenic functions, and can be viewed also as a refinement of the biharmonic ones. In this paper we deepen study the connections between inframonogenic functions and the solutions of the homogeneous Lamé-Navier system in ℝ3. Our findings allow to shed some new light on the structure of the solutions of this fundamental system in 3-dimensional elasticity theory.

Año de publicación:

2018

Keywords:

  • Linear elasticity
  • inframonogenic functions
  • Clifford analysis
  • Lamé system

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Matemáticas aplicadas

Áreas temáticas:

  • Ingeniería y operaciones afines
  • Otras ramas de la ingeniería
  • Mecánica clásica