Infrared Image Colorization Based on a Triplet DCGAN Architecture


Abstract:

This paper proposes a novel approach for colorizing near infrared (NIR) images using a Deep Convolutional Generative Adversarial Network (GAN) architecture. The proposed approach is based on the usage of a triplet model for learning each color channel independently, in a more homogeneous way. It allows a fast convergence during the training, obtaining a greater similarity between the colored NIR image and the corresponding ground truth. The proposed approach has been evaluated with a large data set of NIR images and compared with a recent approach, which is also based on a GAN architecture where all the color channels are obtained at the same time.

Año de publicación:

2017

Keywords:

    Fuente:

    scopusscopus
    googlegoogle

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Red neuronal artificial
    • Ciencias de la computación

    Áreas temáticas de Dewey:

    • Métodos informáticos especiales
    • Ciencias de la computación
    • Artes
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 17: Alianzas para lograr los objetivos
    • ODS 4: Educación de calidad
    Procesado con IAProcesado con IA