Infrared Image Colorization Based on a Triplet DCGAN Architecture
Abstract:
This paper proposes a novel approach for colorizing near infrared (NIR) images using a Deep Convolutional Generative Adversarial Network (GAN) architecture. The proposed approach is based on the usage of a triplet model for learning each color channel independently, in a more homogeneous way. It allows a fast convergence during the training, obtaining a greater similarity between the colored NIR image and the corresponding ground truth. The proposed approach has been evaluated with a large data set of NIR images and compared with a recent approach, which is also based on a GAN architecture where all the color channels are obtained at the same time.
Año de publicación:
2017
Keywords:
Fuente:
scopus
googleTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Red neuronal artificial
- Ciencias de la computación
Áreas temáticas de Dewey:
- Métodos informáticos especiales
- Ciencias de la computación
- Artes
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 4: Educación de calidad