Ingestion and bioaccumulation of polystyrene nanoplastics and their effects on the microalgal feeding of Artemia franciscana


Abstract:

Nanoplastics (NPs) have become one of the most serious environmental problems nowadays. The environmental issues linked to NPs are attributed to the effects after ingestion in marine organisms. Due to the incipient and controversial information about the effects of PS NPs on the feeding of organisms, the aim of this work is to assess (i) digestion dynamics of Artemia franciscana when exposed to PS NPs as the lowest concentration of PS NPs reported in toxicity test [0 (control), 0.006 and 0.6 mg·L-1] and possible interferences in the ingestion of microalgae and (ii) the accumulation and depuration of PS NPs by A. franciscana. Artemia were subjected to ingestion experiments [24 h and 3.5 h], in which the organisms were exposed to PS NPs or to PS NPs + microalgae. Post-exposure feeding (24 h exposure and 2 h feeding) and depuration (24 h exposure and 24 h of depuration) were also carried out. More than 90% of the PS NPs were ingested by Artemia and bioaccumulated in the mandible, stomach, gut, tail gut and appendages after 24 h. The ingestion of microalgae was not affected by the presence of the PS NPs. Data of post-exposure feeding indicated that Artemia previously exposed to plastic and/or microalgae presented similar microalgal ingestion (around 70%); the highest microalgal consumption (around 90%) was recorded in the treatment in which Artemia were previously starved (no plastic and no microalgae). The presence of PS NPs in the gut after the depuration experiments indicates that 24 h was not enough to eliminate the PS NPs.

Año de publicación:

2020

Keywords:

  • Polystyrene
  • Plastics
  • Depuration
  • Artemia franciscana
  • consumption

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ecología
  • Ecología
  • Biomedicina

Áreas temáticas:

  • Otros problemas y servicios sociales
  • Microorganismos, hongos y algas
  • Ecología