Innovative integrators for computing the optimal state in LQR problems


Abstract:

We consider the numerical approximation of linear quadratic optimal control problems for partial differential equations where the dynamics is driven by a strongly continuous semigroup. For this problems, the optimal control is given in feedback form, i.e., it relies on solving the associated Riccati equation and the optimal state. We propose innovative integrators for solving the optimal state based on operator splitting procedures and exponential integrators and prove their convergence. We illustrate the performance of our approach in numerical experiments.

Año de publicación:

2017

Keywords:

  • Convergence Analysis
  • Abstract LQR problems
  • Operator splitting procedures
  • Optimal Control
  • Exponential integrators

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Algoritmo
  • Optimización matemática
  • Control óptimo

Áreas temáticas:

  • Ciencias de la computación

Contribuidores: