Integrating Lipschitzian dynamical systems using piecewise algorithmic differentiation
Abstract:
In this article we analyse a generalized trapezoidal rule for initial value problems with piecewise smooth right-hand side F : R n → R n based on a generalization of algorithmic differentiation. When applied to such a problem, the classical trapezoidal rule suffers from a loss of accuracy if the solution trajectory intersects a nondifferentiability of F. The advantage of the proposed generalized trapezoidal rule is threefold: Firstly, we can achieve a higher convergence order than with the classical method. Moreover, the method is energy preserving for piecewise linear Hamiltonian systems. Finally, in analogy to the classical case we derive a third-order interpolation polynomial for the numerical trajectory. In the smooth case, the generalized rule reduces to the classical one. Hence, it is a proper extension of the classical theory. An error estimator is given and numerical results are presented.
Año de publicación:
2017
Keywords:
- 65L05
- 65L06
- 65L99
- Lipschitz continuity
- nonsmooth
- energy preservation
- Automatic differentiation
- 65L70
- trapezoidal rule
- dense output
- Piecewise linearization
- 65P10
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema dinámico
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Ciencias de la computación