Integrating Lipschitzian dynamical systems using piecewise algorithmic differentiation


Abstract:

In this article we analyse a generalized trapezoidal rule for initial value problems with piecewise smooth right-hand side F : R n → R n based on a generalization of algorithmic differentiation. When applied to such a problem, the classical trapezoidal rule suffers from a loss of accuracy if the solution trajectory intersects a nondifferentiability of F. The advantage of the proposed generalized trapezoidal rule is threefold: Firstly, we can achieve a higher convergence order than with the classical method. Moreover, the method is energy preserving for piecewise linear Hamiltonian systems. Finally, in analogy to the classical case we derive a third-order interpolation polynomial for the numerical trajectory. In the smooth case, the generalized rule reduces to the classical one. Hence, it is a proper extension of the classical theory. An error estimator is given and numerical results are presented.

Año de publicación:

2017

Keywords:

  • 65L05
  • 65L06
  • 65L99
  • Lipschitz continuity
  • nonsmooth
  • energy preservation
  • Automatic differentiation
  • 65L70
  • trapezoidal rule
  • dense output
  • Piecewise linearization
  • 65P10

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Sistema dinámico
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Ciencias de la computación