Integrating model predictive control and deep learning for the management of an EV charging station


Abstract:

Explicit model predictive control (EMPC) maps offline the control laws as a set of regions as a function of bounded uncertain parameters using multi-parametric programming. Then, in online mode, it seeks the best solution within these areas. Unfortunately, the offline solution can be computationally demanding because the number of regions can grow exponentially. Thus, this paper presents the application of a deep neural network (DNN) to learn the EMPC's regions for a photovoltaic-based charging station. The main uncertain parameters in this study are the forecast error of photovoltaic power production and the battery's state of charge. Additionally, the connection or disconnection of an electric vehicle is considered a disruption. The final controller creates the regions at the start of each prediction time or when a disruption occurs, only using the previously created DNN. The obtained solution is validated using data from an e-vehicle charging station installed at the University of Trieste, Italy.

Año de publicación:

2023

Keywords:

  • Photovoltaic (PV)
  • Electric vehicle (EV)
  • uncertainties
  • energy management
  • Deep Neural Network
  • Optimization
  • Explicit model pbkp_redictive control
  • Model Pbkp_redictive Control

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ingeniería energética
  • Aprendizaje automático

Áreas temáticas de Dewey:

  • Métodos informáticos especiales
  • Ciencias de la computación
  • Física aplicada
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 7: Energía asequible y no contaminante
  • ODS 13: Acción por el clima
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA