Integration of the Lane–Emden equation for relativistic anisotropic polytropes through gravitational decoupling: a novel approach
Abstract:
In this work we propose a novel approach to integrate the Lane–Emden equations for relativistic anisotropic polytropes. We take advantage of the fact that Gravitational Decoupling allows to decrease the number of degrees of freedom once a well known solution of the Einstein field equations is provided as a seed so after demanding the polytropic equation for the radial pressure the system is automatically closed. The approach not only allows to extend both isotropic or anisotropic known solutions but simplifies the computation of the Tolman mass whenever the Minimal Geometric Deformation is considered given that the gtt component of the metric remains unchanged. We illustrate how the the method works by analyzing the solutions obtained from Tolman IV, Durgapal IV and Wymann IIa isotropic systems as a seed for the integration.
Año de publicación:
2022
Keywords:
Fuente:
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Relatividad general
- Modelo matemático
Áreas temáticas:
- Mecánica clásica