Interactive Visualization Interfaces for Big Data Analysis Using Combination of Dimensionality Reduction Methods: A Brief Review
Abstract:
The Big Data analysis allows to generate knowledge based on mathematical models that surpass human capabilities, and therefore it is necessary to have robust computer systems. In this connection, the dimensionality reduction (DR) allows to perform approximations to make data perceptible in a simple and compact way while also the computational cost is reduced. Additionally, interactive interfaces enable the user to work with algorithms involving complex mathematical and statistical processes typically aimed at providing weighting factors to each RD algorithm to find the best way to represent data at a low dimension. In this study, a bibliographic re-view of the different models of interactive interfaces for the analysis of Big Data using RD is presented, by considering different, existing proposals and approaches on how to display the information. Particularly, those approaches based on mental processes and uses of color along with an intuitive handling are of special interest.
Año de publicación:
2020
Keywords:
- BIG DATA
- Data Mining
- Interactive Interface
- Business intelligence
- Dimensionality reduction
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Análisis de datos
- Ciencias de la computación
Áreas temáticas:
- Métodos informáticos especiales
- Programación informática, programas, datos, seguridad
- Funcionamiento de bibliotecas y archivos