Interactive data visualization using dimensionality reduction and similarity-based representations


Abstract:

This work presents a new interactive data visualization approach based on mixture of the outcomes of dimensionality reduction (DR) methods. Such a mixture is a weighted sum, whose weighting factors are defined by the user through a visual and intuitive interface. Additionally, the low-dimensional representation space produced by DR methods are graphically depicted using scatter plots powered via an interactive data-driven visualization. To do so, pairwise similarities are calculated and employed to define the graph to be drawn on the scatter plot. Our visualization approach enables the user to interactively combine DR methods while provided information about the structure of original data, making then the selection of a DR scheme more intuitive.

Año de publicación:

2017

Keywords:

  • Pairwise similarity
  • data visualization
  • Dimensionality reduction

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Análisis de datos
  • Ciencias de la computación
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales