Internal waves in sheared flows: Lower bound of the vorticity growth and propagation discontinuities in the parameter space
Abstract:
This study provides sufficient conditions for the temporal monotonic decay of enstrophy for two-dimensional perturbations traveling in the incompressible, viscous, plane Poiseuille, and Couette flows. Extension of Synge's procedure [J. L. Synge, Proc. Fifth Int. Congress Appl. Mech. 2, 326 (1938); Semicentenn. Publ. Am. Math. Soc. 2, 227 (1938)] to the initial-value problem allow us to find the region of the wave-number-Reynolds-number map where the enstrophy of any initial disturbance cannot grow. This region is wider than that of the kinetic energy. We also show that the parameter space is split into two regions with clearly distinct propagation and dispersion properties.
Año de publicación:
2018
Keywords:
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Dinámica de fluidos
- Dinámica de fluidos
- Dinámica de fluidos
Áreas temáticas:
- Mecánica de fluidos