Introducing a comprehensive physics-based modelling framework for tandem and other PV systems


Abstract:

We introduce a novel simulation tool capable of calculating the energy yield of a PV system based on its fundamental material properties and using self-consistent models. Thus, our simulation model can operate without measurements of a PV device. It combines wave and ray optics and a dedicated semiconductor simulation to model the optoelectronic PV device properties resulting in the IV-curve. The system surroundings are described via spectrally resolved ray tracing resulting in a cell resolved irradiance distribution, and via the fluid dynamics-based thermal model, in the individual cell temperatures. A lumped-element model is used to calculate the IV-curves of each solar cell for every hour of the year. These are combined factoring in the interconnection to obtain the PV module IV-curves, which connect to the inverter for calculating the AC energy yield. In our case study, we compare two types of 2 terminal perovskite/silicon tandem modules with STC PV module efficiencies of 27.7% and 28.6% with a reference c-Si module with STC PV module efficiency of 20.9%. In four different climates, we show that tandem PV modules operate at 1–1.9 °C lower yearly irradiance weighted average temperatures compared to c-Si. We find that the effect of current mismatch is significantly overestimated in pure optical studies, as they do not account for fill factor gains. The specific yields in kWh/kWp of the tandem PV systems are between −2.7% and +0.4% compared to the reference c-Si system in all four simulated climates. Thus, we find that the lab performance of the simulated tandem PV system translates from the laboratory to outdoors comparable to c-Si systems.

Año de publicación:

2022

Keywords:

  • Specific yield
  • Pervoskite/silicon tandem
  • Operating temperature
  • Energy yield modelling
  • Opto-electric device simulation
  • Tandem PV systems

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Energía
  • Fotovoltaica

Áreas temáticas:

  • Física
  • Física aplicada