Intrusion detection with neural networks based on knowledge extraction by decision tree


Abstract:

Detection of intruders or unauthorized access to computers has always been critical when dealing with information systems, where security, integrity and privacy are key issues. Although more and more sophisticated and efficient detection strategies are being developed and implemented, both hardware and software, there is still the necessity of improving them to completely eradicate illegitimate access. The purpose of this paper is to show how soft computing techniques can be used to identify unauthorized access to computers. Advanced data analysis is first applied to obtain a qualitative approach to the data. Decision tree are used to obtain users’ behavior patterns. Neural networks are then chosen as classifiers to identify intrusion detection. The result obtained applying this combination of intelligent techniques on real data is encouraging.

Año de publicación:

2017

Keywords:

  • Behavioral profile
  • pattern recognition
  • Neural networks
  • intrusion detection
  • security
  • decision tree

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Red neuronal artificial
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales
  • Programación informática, programas, datos, seguridad